人工智能这个词的年纪应该比很多人的父母年纪都大。
“人工智能”这个词诞生于1956年,首次出现在达特茅斯学院的夏季研讨会,当时的研讨会全称为“达特茅斯暑期人工智能项目”,人工智能这个词比第一代计算机的诞生晚了10年。不过当时的计算机远没有这么先进与好玩。
这个词是由约翰·麦卡锡提出的。目前人工智能有很多的讨论,更多的是用人工智能来对人类行为进行批判。但是当时提出的时候,人工智能与人类行为关系不大,最大的暗示可能是机器可以去执行人类执行的任务。
“人工智能”曾遭遇寒冬,1956年,西蒙和纽厄尔预言“十年之内,数字计算机将成为国际象棋世界冠军。”(希尔伯特·西蒙曾经获得过“诺贝尔经济学奖”,计算机领域的“图灵奖”等世界该领域的最顶尖奖项。)不过他们在1966年,才开发了最早的下棋程序之一MATER。对人工智能的看好一直持续到了1973年,但是几乎所有的人工智能都远逊于预测。
伴随着人工智能产生的另一个词为“智能增强”。从名词上来看,基本上的意思是“用计算机增加人类的智慧”。“智能增强”的技术发展突飞猛进,当然主要发展地域是在美国,当时的国内还执着于文化运动。在上世纪70-80年代,个人计算机爆发。甚至在1982年,美国《时代周刊》将个人计算机选为“年度人物”。
直到1997年,超级电脑“深蓝”让国际象棋世界冠军卡斯帕罗夫在电视上低下了人类高傲的头颅。当时造成的影响绝对是今天无法想象的,远比之前阿尔法狗战胜韩国围棋冠军李世石影响深远,人们都认为机器统治人类的那一天即将到来。
人工智能这个概念其实一直很火,只是因为这几年媒体行业太过发达,信息传播太快,导致信息爆炸,无数的信息从四面八方传到人类的脑子里,这就造成好像“人工智能”这个词好像是近几年才诞生的,你一定想不到这个词已经诞生60年吧。
现在很多公司都在宣传人工智能,尤其谷歌、苹果、还有国内的百度等等,都在大规模宣传人工智能,并把宝压在了人工智能上。在人工智能方面虽然有siri这样的优秀程序,但是毕竟程序就是程序,距离我们在**中看到的人工智能还有很大差距。
所以,我觉得人工智能的发展并没有那么夸张,算是正常发展吧,只是碰瓷的多了。
AI(人工智能)的英文全称?AI指什么,包含什么?
GMP有多个释义,具体如下:
1、GMP:药品生产质量管理规范
GMP全称(GOOD MANUFACTURING PRACTICES),中文含义是“生产质量管理规范”或“良好作业规范”、“优良制造标准”。
GMP要求制药、食品等生产企业应具备良好的生产设备,合理的生产过程,完善的质量管理和严格的检测系统,确保最终产品质量(包括食品安全卫生等)符合法规要求。
2、GMP:开源数学运算库
GMP是The GNU MP Bignum Library,是一个开源的数学运算库,它可以用于任意精度的数学运算,包括有符号整数、有理数和浮点数。它本身并没有精度限制,只取决于机器的硬件情况。
3、GMP:德国GMP建筑师事务所
gmp是少数进行全方位设计的建筑师事务所之一,其对建筑项目从方案设计到施工建造直至室内装修全面负责。在国际上gmp是以机场建筑设计而开始闻名于世。
1975年柏林的泰格尔机场作为第一座驶入式机场被启用。这一创新设计在斯图加特机场及汉堡机场航站楼的出港和到港层面的设计建造中进一步得到了发展和完善。
4、GMP:保证最高价格合同
GMP(也被称为Guaranteed Maximum Price)是一种定价的赔偿金额限制,可以接收来自卖方的要求,以换取某种类型的商品或服务的购买。GMP合同,特别应用于建筑业中建筑公司(承包商)和企业(雇主或客户端)之间。
5、GMP:良好操作规范
GMP是“good manufacturing practices(良好操作规范)”的简称,即企业为生产符合食品标准或食品法规的产品所必需遵循的、经食品卫生监督管理机构认可的强制性作业规范。?
百度百科-GMP:良好操作规范
百度百科-GMP:保证最高价格合同
百度百科-GMP:德国GMP建筑师事务所
百度百科-GMP:开源数学运算库
百度百科-GMP:药品生产质量管理规范
数字经济的通俗解释
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
一、人工智能的历史
人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。这可是不是一个容易的事情。 如果希望做出一台能够思考的机器,那就必须知识什么是思考,更进一步讲就是什么是智慧,它的表现是什么,你可以说科学
家有智慧,可你决不会说一个路人什么也不会,没有知识,你同样不敢说一个孩子没有智慧,可对于机器你就不敢说它有智慧了吧,那么智慧是如何分辨的呢?我们说的话,我们做的事情,我们的想法如同泉水一样从大脑中流出,如此自然,可是机器能够吗,那么什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。
在定义智慧时,英国科学家图灵做出了贡献,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的,图灵实验的本质 就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。不要以为图灵只做出这一点贡献就会名垂表史,如果你是学计算机的就会知道,对于计算机人士而言,获得图灵奖就等于物理学家获得诺贝尔奖一样,图灵在理论上奠定了计算机产生的基础,没有他的杰出贡献世界上根本不可能有这个东西,更不用说什么网络了。
科学家早在计算机出现之前就已经希望能够制造出可能模拟人类思维的机器了,在这方面我希望提到另外一个杰出的数学家,哲学家布尔,通过对人类思维进行数学化精确地刻画,他和其它杰出的科学家一起奠定了智慧机器的思维结构与方法,今天我们的计算机内使用的逻辑基础正是他所创立的。
我想任何学过计算机的人对布尔一定不会陌生,我们所学的布尔代数,就是由它开创的。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具了,在以后的岁月中,无数科学家为这个目标努力着,现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了,刚刚结束的国际象棋大赛中,计算机把人给胜了,这是人们都知道的,大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
现在人类已经把计算机的计算能力提高到了前所未有的地步,而人工智能也在下世纪领导计算机发展的潮头,现在人工智能的发展因为受到理论上的限制不是很明显,但它必将象今天的网络一样深远地影响我们的生活。
在世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现要从计算机的诞生开始算起,这时人类才有可能以机器的实现人类的智能。AI这个英文单词最早是在1956年的一次会议上提出的,在此以后,因此一些科学的努力它得以发展。人工智能的进展并不象我们期待的那样迅速,因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。
让我们顺着人工智能的发展来回顾一下计算机的发展,在1941年由美国和德国两国共同研制的第一台计算机诞生了,从此以后人类存储和处理信息的方法开始发生革命性的变化。第一台计算机的体型可不算太好,它比较胖,还比较娇气,需要工作在有空调的房间里,如果希望它处理什么事情,需要大家把线路重新接一次,这可不是一件省力气的活儿,把成千上万的线重新焊一下我想现在的程序员已经是生活在天堂中了。
终于在1949发明了可以存储程序的计算机,这样,编程程序总算可以不用焊了,好多了。因为编程变得十分简单,计算机理论的发展终于导致了人工智能理论的产生。人们总算可以找到一个存储信息和自动处理信息的方法了。
虽然现在看来这种新机器已经可以实现部分人类的智力,但是直到50年代人们才把人类智力和这种新机器联系起来。我们注意到旁边这位大肚子的老先生了,他在反馈理论上的研究最终让他提出了一个论断,所有
人类智力的结果都是一种反馈的结果,通过不断地将结果反馈给机体而产生的动作,进而产生了智能。我们家的抽水马桶就是一个十分好的例子,水之所以不会常流不断,正是因为有一个装置在检测水位的变化,如果水太多了,就把水管给关了,这就实现了反馈,是一种负反馈。如果连我们厕所里的装置都可以实现反馈了,那我们应该可以用一种机器实现反馈,进而实现人类智力的机器形式重现。这种想法对于人工智能早期的有着重大的影响。
在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们现在所采用的方法思想方法有许多还是来自于这个50年代的程序。
1956年,作为人工智能领域另一位著名科学家的麦卡希(就是右图的那个人)召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,工人智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到现在许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。
在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,如统计分析数据,参与医疗诊断等等,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的,但我想对科学真理的无尽追求才是最终的动力吧。
二、人工智能的应用领域
1、问题求解。
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
2、逻辑推理与定理证明。
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3、自然语言处理。
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
4、智能信息检索技术。
受"()*+ (*) 技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。
5、专家系统。
专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“ 专家系统”或“ 知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。
三、人工智能理论的数学化趋势越来越突出
在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在〔!,"〕上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(")与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。
五、人工智能的发展现状及前景
目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,SOAr 在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。
80 年代,以Newell A 为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar 已经显示出强大的问题求解能力。在Soar中已实现了30 多种搜索方法,实现了若干知识密集型任务(专家系统) ,如RI 等。rOOks 提出了人工智能的一种新的途径。它认为无需概念或者说无需符号表示,智能系统的能力可以逐步进化。在它的研究中突出4 个概念:(1) 所处的境遇 机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2) 具体化 机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后立即会有反馈。(3) 智能 智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4) 浮现 从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。
五、结语
人工智能不单单需要逻辑思维与模仿,科学家们对人类大脑和神经系统研究得越多,他们越加肯定:情感是智能的一部分,而不是与智能相分离的。因此人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且还要赋予它情感能力。许多科学家断言,机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到下世纪中叶,人类生命的本质也会发生变化。神经植入将增强人类的知识和思考能力,并且开始向一种复合的人/机关系过渡,这种复合关系将使人类逐渐停止对生物机体的需求。大量非常微小的机器人将在大脑的感觉区里占据一席之地,并且创造出真假难辨的虚拟现实的仿真效果。
人工智能的实现,不是天方夜谭。虽然会很辛苦,但是没有人规定只有人类可以思考。就像是生命的不同表现形式,动物,植物,微生物,是不同的生命的形式。人类可以以未知的方式思考,计算机也可以以另一种(并非一定要和人相同的)形式思考。
著名软件公司ADOBE的专业制图软件Illustrator 的一种文件格式!
AI ( Artificial Intelligence ):人工智能。就是指计算机模仿真实世界的行为方式与人类思维与游戏的方式的运算能力。那是一整套极为复杂的运算系统与运算规则。
=============================================================
此外,AI还代表ALLEN IVERSON(阿伦·艾佛森),他生于美国,是全世界最好的篮球联盟——“NBA”96黄金一代的代表人物,是NBA有史以来最好的后卫之一,他以183cm身高在众多魁梧的球员中灵动跳跃,独领风骚。他先后摘取过NBA得分王、抢断王等称号,还在2001年带领76人队闯进NBA总决赛。他以特立独行的风格和满身的纹身成为全球篮球青少年疯狂追捧的偶像。
————————————————————————————————————
歌手姓名: AI 英文名: AI
唱片公司: 环球唱片(Universal Music)
国 籍: 日本 语 言: 日语
兴 趣:
个人经历: *东瀛首席嘻哈女力、R&B歌姬 她是张力十足的嘻哈女力,也是柔情似水的R&B美声歌姬,AI,22岁的她在时尚一派与安室奈美惠合唱‘Uh、Uh…’,并在珍娜杰克森的音乐录影带中展现绝赞舞技,除了过人的歌舞才华之外,词曲创作力更是傲视东瀛R&B舞台,在嘻哈音乐大厂Def Jam Japan签下一纸合约之后,发行‘ORIGINAL A.I./原创A.I.’专辑立刻赢得媒体一致肯定,除了拿下SPACE SHOWER TV的R& B音乐录影带大奖外,更代表日本参加2004年MTV BUZZ ASIA演唱会,一举打进亚洲市场。
以过人演唱的天赋而获得日本“新时代音乐代言人”殊荣的HIP HOP小天后AI,近日参加了在台北举行的“台北流行音乐节”,同行的日本歌手还有一青窈以及藤木直人。在这场盛大的音乐节上,AI以她新颖而独特的演唱方式以及活力四射的表演令在场6万歌迷为之倾倒。 AI有着四分之一的意大利血统,骨子里就透出一种浪漫和前卫的气息。而她又是在美国长大,接触的音乐也很多元化。由于AI的母亲非常喜欢音乐,所以从小她就深受各种类型音乐的熏陶。在15岁时,AI还曾经参加过珍妮·杰克逊的MTV《GO DEEP》的录制。不过,在日本出道时却并不顺利,因为与工作人员在音乐理解上的不同,当大家对自己的音乐反映很冷淡时,她就很想去敲墙壁,可见其可爱之处。不过,AI并没有被现实所击败,仍然坚持走HIP HOP这条音乐路线,使得她的音乐风格也带给人们一种全新的感受。在今年日本最权威的公信榜票选中,AI从众多新晋女性中脱颖而出,成为新一代音乐天后接班人。对此,AI自己也非常满意,她表示自己想要成为一个很有朝气的歌手,给更多的人带来幸福感。这次的台北流行音乐节,AI也是做足了准备。除了带上偕同一起演出的DJ、化妆师、造型师、人声乐手AFURA以外,连日本报知新闻、电通、朝日电视台等日本媒体的高层人士以及自己经济公司的社长也都一同前来,浩浩荡荡23人的访华队伍令AI颇有面子。而赴台之前,AI也时常向安室奈美惠等曾经去过台湾的人请教,以进一步了解台湾。听说台北美食多多,AI兴奋地说想要常常小笼包、路边摊,所以这次的台湾之行,除了要参加音乐节和拍摄特辑,还顺带要向日本观众介绍台湾美食,这也使AI欣喜不已。 台湾表演大获成功后,AI也表示自己想要更了解华人音乐,有机会的话,也希望能够像平井坚、安室奈美惠等日本歌手一样,可以在台湾等地开演唱会,和台湾的歌手同台献艺。其实AI出国献艺已经不是第一次,在几个月前的韩国汉城MTV BUZZ ASIA演唱会中,AI也曾把歌词改为韩文,而这次为了更贴近观众,AI也把歌词改成了中文来演唱。为期四天的台湾之行,AI让更多的人领略了她的“小天后”风采,也顺便为自己今秋将要展开的全国巡演造势。
数字经济作为经济学概念的数字经济是人类通过大数据(数字化的知识与信息)的识别—选择—过滤—存储—使用,引导、实现资源的快速优化配置与再生、实现经济高质量发展的经济形态。
数字经济通过不断升级的网络基础设施与智能机等信息工具,互联网—云计算—区块链—物联网等信息技术,人类处理大数据的数量、质量和速度的能力不断增强,推动人类经济形态由工业经济向信息经济—知识经济—智慧经济形态转化,极大地降低社会交易成本,提高资源优化配置效率,提高产品、企业、产业附加值,推动社会生产力快速发展,同时为落后国家后来居上实现超越性发展提供了技术基础。
数字经济也称智能经济,是工业4.0或后工业经济的本质特征,是信息经济—知识经济—智慧经济的核心要素。正是得益于数字经济提供的历史机遇,使我国得以在许多领域实现超越性发展。
2020年5月22日,国务院总理李克强在发布的2020年国务院政府工作报告中提出,打造数字经济新优势。
基本信息
中文名
数字经济
外文名
Digital Economy
类型
经济系统
定律
梅特卡夫法则,摩尔定律
定义
数字经济 作为经济学概念的数字经济是人类通过大数据(数字化的知识与信息)的识别—选择—过滤—存储—使用,引导、实现资源的快速优化配置与再生、实现经济高质量发展的经济形态。
释义1
数字经济通过不断升级的网络基础设施与智能机等信息工具,互联网—云计算—区块链—物联网等信息技术,人类处理大数据的数量、质量和速度的能力不断增强,推动人类经济形态由工业经济向信息经济—知识经济—智慧经济形态转化,极大地降低社会交易成本,提高资源优化配置效率,提高产品、企业、产业附加值,推动社会生产力快速发展,同时为落后国家后来居上实现超越性发展提供了技术基础。数字经济也称智能经济,是工业4.0或后工业经济的本质特征,是信息经济—知识经济—智慧经济的核心要素。正是得益于数字经济提供的历史机遇,使我国得以在许多领域实现超越性发展
释义2
数字经济指一个经济系统,在这个系统中,数字技术被广泛使用并由此带来了整个经济环境和经济活动的根本变化。数字经济也是一个信息和商务活动都数字化的全新的社会政治和经济系统。企业、消费者和政府之间通过网络进行的交易迅速增长。数字经济主要研究生产、分销和销售都依赖数字技术的商品和服务。数字经济的商业模式本身运转良好,因为它创建了一个企业和消费者双赢的环境。
截至2016年底,全球市值最高的10家公司中,有5家数字经济企业;市值前20强的企业中有9家属于数字经济企业。
词语介绍
数字经济(Digital Economy)
数字经济的发展给包括竞争战略、组织结构和文化在内的管理实践带来了巨大的冲击。随着先进的网络技术被应用于实践,我们原来的关于时间和空间的观念受到了真正的挑战。企业组织正在努力想办法整合与顾客、供应商、合作伙伴在数据、信息系统、工作流程和工作实务等方面的业务,而他们又都有各自不同的标准、协议、传统、需要、激励和工作流程。
基本特征
数字经济受到 三大定律的支配。
第一个定律是梅特卡夫法则:网络的价值等于其节点数的平方。所以网络上联网的计算机越多,每台电脑的价值就越大, “增值”以指数关系不断变大。
第二个定律是摩尔定律:计算机硅芯片的处理能力每18个月就翻一翻,而价格以减半数下降。
第三个定律是达维多定律:进入市场的第一代产品能够自动获得50%的市场份额,所以任何企业在本产业中必须第一个淘汰自己的产品。实际上达维多定律体现的是网络经济中的马太效应。这三大定律决定了数字经济具有以下的基本特征。
快捷性
首先,互联网突破了传统的国家、地区界限,被网络连为一体,使整个世界紧密联系起来,把地球变成为一个“村落”。
其次,突破了时间的约束,使人们的信息传输、经济往来可以在更小的时间跨度上进行。
再次,数字经济是一种速度型经济。现代信息网络可用光速传输信息,数字经济以接近于实时的速度收集、处理和应用信息,节奏大大加快了。
高渗透性
迅速发展的信息技术、网络技术,具有极高的渗透性功能,使得信息服务业迅速地向第一、第二产业扩张,使三大产业之间的界限模糊,出现了第一、第二和第三产业相互融合的趋势。
自我膨胀性
数字经济的价值等于网络节点数的平方,这说明网络产生和带来的效益将随着网络用户的增加而呈指数形式增长。在数字经济中,由于人们的心理反应和行为惯性,在一定条件下,优势或劣势一旦出现并达到一定程度,就会导致不断加剧而自行强化,出现“强者更强,弱者更弱”的“赢家通吃”的垄断局面。
边际效益递增性
主要表现为:一是数字经济边际成本递减;二是数字经济具有累积增值性。
外部经济性
网络的外部性是指,每个用户从使用某产品中得到的效用与用户的总数量有关。用户人数越多,每个用户得到的效用就越高。
可持续性
数字经济在很大程度上能有效杜绝传统工业生产对有形资源、能源的过度消耗,造成环境污染、生态恶化等危害,实现了社会经济的可持续发展
直接性
由于网络的发展,经济组织结构趋向扁平化,处于网络端点的生产者与消费者可直接联系,而降低了传统的中间商层次存在的必要性,从而显著降低了交易成本,提高了经济效益。
本质
数字经济的本质在于信息化。信息化是由计算机与互联网等生产工具的革命所引起的工业经济转向信息经济的一种社会经济过程。具体说来,信息化包括信息技术的产业化、传统产业的信息化、基础设施的信息化、生活方式的信息化等内容。信息产业化与产业信息化,即信息的生产和应用两大方面是其中的关键。信息生产要求发展一系列高新信息技术及产业,既涉及微电子产品、通信器材和设施、计算机软硬件、网络设备的制造等领域,又涉及信息和数据的采集、处理、存储等领域;信息技术在经济领域的应用主要表现在用信息技术改造和提升农业、工业、服务业等传统产业上。
当今世界正发生着人类有史以来最为迅速、广泛、深刻的变化。以信息技术为代表的高新技术突飞猛进,以信息化和信息产业发展水平为主要特征的综合国力竞争日趋激烈。信息化对经济发展和社会进步带来的深刻影响,引起世界各国的普遍关注。发达国家和发展中国家都十分重视信息化,把加快推进信息化作为经济和社会发展的战略任务。数字革命创造的信息产业是一种战略性产业。
它既可进行制造业活动,又可提供服务性业务,或者同时从事两种活动,成为制造业与服务业的混合物而被称为“液态混合体”。20世纪90年代后期,世界经济的年均增长率在3%左右,而信息技术及相关产业的增长速度是经济增长速度的2-3倍。在许多发达国家中,信息产业已成为国民经济的第一大产业。有研究成果表明:1998年信息技术和信息产业对世界经济增长的贡献率为14.7%,考虑到产品和服务价值下降因素,实际贡献率超过25%;1999年全球信息产业的并购交易总额达到了1万亿美元,年增长率达到200%。这也表明,对于信息技术和信息化的投入,是数字经济的重要动力。
发展趋势
趋势一:速度成为关键竞争要素随着消费者的需求不断变化和竞争对手不断出现,产品与服务的更新周期越来越快。这要求企业以最快的速度对市场做出反应、以最快的速度制定新的战略并加以实施、以最快的速度对战略进行调整。
迅速反应和迅速调整都要求企业建设自身的“数字神经”平台,未来几年中,百分之七十的中国企业将建设自己的信息共享平台。
趋势二:跨企业的合作成为必然选择速度的压力使得企业必须通过合作进行资源整合和发挥自己的核心优势。规模经济的要求、新产品研发等巨额投入的风险也迫使企业必须以合作的方式来分担成本,甚至是与竞争对手进行合作,形成合作竞争的关系。
信息技术手段特别是互联网技术极大地降低了合作沟通的信息成本,使得广泛的、低成本的合作成为可能。通过信息平台而不是组织整合平台,伙伴间形成了虚拟企业。这样的虚拟企业既具有大企业的资源优势,又具有小企业的灵活性,为合作的各方带来极大的竞争优势。未来中国企业百分之六十的网络应用是用于内部业务和伙伴的业务沟通。
趋势三:行业断层、价值链重构和供应链管理在信息技术的快速发展的冲击之下,许多行业出现了大的断层,产业的游戏规则在变化、新的对手来自四面八方、新的供应商随时产生。这种断层既对行业中的现存者提出了挑战,又为新生者提供了机会,各个行业都不同程度地存在行业重新洗牌的机会。许多中间环节面临消除的危险,他们被迫提供新的、更大的价值;许多企业进入价值链的其他环节(上游或下游);制造业向服务业转型或在价值链中重新定位(如从品牌制造商转为OEM制造商)等;供应链。中国金融(招商银行和平安保险)和家电行业(海尔及美的)已经开始了行动。
企业主动或被动地利用数字化手段以对应价值链重构:或重新抓住自己的客户;或重组优化自己的供应商队伍。
趋势四:大规模量身定制成为可能传统经济中,商品或服务的多样性(richness)与到达的范围(reach)是一对矛盾。大众化的商品总是千篇一律,而量身定制的商品只有少数人能够享用。
但数字技术的发展改变了这一切。企业现在能够以极低的成本收集、分析不同客户的资料和需求,通过灵活、柔性的生产系统分别定制。国外汽车和服装行业提供了许多成功的例子。大规模量身定制生产方式将给每个客户带来个性化的产品和服务,同时要求企业具备极高的敏捷反应能力。
影响要素
软件
IDC(国际数据公司)的一份研究说服务软件将以每年90%的速度往上涨,到2004年,该软件市场价值将达到78亿美元。在未来12个月里,应用软件将从个人机向网络服务器和网上应用服务转变。
信息
它对于网络内容提供商来说简直就是最大的财富,但它们必须把生活真实的一面告诉读者。代表许多提供互联网内容服务提供商(简称ISP),现在大多数网上信息是免费的,这对ISP是一个严峻挑战。为了应付这一挑战,ISP必须将互联网产业和传统产业结合起来,并且必须同科技专家共同努力以保护自己的产品。
教育
对孩子和成人都一样,是数字世界一个迅速增长的因素,教育科技手段将在未来几年里产生重大变化。SIIA说:“ISP和互联网公司正将它们的商业模式转向B2B(在这里当然指ISP或其它互联网公司提供学校教育和公司培训)和B2C(指ISP等提供业余培训和远程函授等方式)。”
顾客权利
SIIA称顾客权利在过去的几年里也成为影响数字经济并推动其发展的重要因素,现在这种权利还必须扩展,必须保护用户信息和地址等私有问题,必须发现顾客的真正需要。电子商务销售商必须在未来的12个月里详细了解提供严格的个人隐私保护政策。
商业数字化
在过去10年里,美国几乎所有的行业都数字化了。从会计到仓储,从人事到日程安排,数字技术无处不在,通过这种数字化进程,美国的企业也都尝到了甜头。在未来12个月里美国企业的数字化进程还将继续,并且B2B将独领风骚。
数字经济政策
当然,这么多公司涌入数字经济,它们必须要有一个明确的行业法规,尤其在个人隐私和电子商务收税这几个问题上。没有明确的评估和建议,数字经济的未来只能停滞在政策制定者手中,而绝不是那些将数字经济变为可能的创新者和企业家手里。
发展优势
20世纪90年代以来,美国抓住了数字革命的机遇,创造了10多年的经济繁荣。欧洲、日本等地区和国家,也紧紧追随着美国,积极推进数字革命,产生了巨大的成效。对于发展中国家来说,数字革命更是“千载难逢”的良机。在数字时代中,发展中国家可以充分利用数字经济中的后发性优势,缩小与发达国家的数字鸿沟。印度就是利用数字经济的后发性优势,使其信息技术在世界范围内具有强大竞争力,从而推动本国经济快速发展的典型案例。
边际报酬递增的后发性优势数字经济的特征表明,在知识的创新阶段,知识应用的范围越广泛,涉及到的客户越多,就能创造越多的价值。在知识的普及阶段和模仿阶段,由于时效性问题,知识在发达国家的边际报酬下降。在发展中国家却能维持很高的边际报酬。因为对于发展中国家来说,这些知识仍然是最新的、最具时间价值的。信息技术进入21世纪以来正处于普及和模仿阶段,向发展中国家扩散符合发达国家的最高利益,这可以大大提高发展中国家的信息化速度。
工业化方面的后发性优势西方国家经历了漫长的工业化过程之后,才进入信息化发展阶段。21世纪以后,向发展中国家转移制造业生产,已成为很多发达国家提升产业结构、重点发展数字经济主导产业的重大战略举措。对于发展中国家来说。这会带来三重利益:
一是发展中国家可以充分利用发达国家的工业化成就。包括技术上的成就和制度上的成就,大大缩短工业化进程,加速本国的经济发展;
二是发展中国家可以将工业化与信息化结合起来,以信息化和高科技促进工业化发展,彻底改造传统产业,重塑自己的比较优势与竞争优势;
三是发展中国家可以通过大规模利用信息技术,在全社会范围内降低生产成本和交易成本,加速培育市场关系,逐步形成强大的物流、资金流和信息流,推动市场经济走向繁荣。
客户资源方面的后发性优势
一些发展中国家人口众多、经济增长迅速,有着丰富的客户资源,其市场潜力远非发达国家所能比拟,这就形成了发展中国家第一层次的网络比较优势。如果考虑到发展趋势,几乎所有的发展中国家都是一个有待开发的市场。
发展中国家丰富的客户资源与发达国家丰富的知识、网络资源相结合,将会大大推动世界经济的发展。发展中国家市场潜力的强大吸引力,会促使发达国家的技术、资本源源不断地流入,促使发展中国家的产业结构、技术水平和人力资源都出现根本性的变化,从而缩小数字鸿沟,提高发展中国家的收入水平和生产力水平。
知识能力方面的后发性优势一些发展中国家大力推进教育和科学技术,使得知识要素的禀赋在增加,尤其是获取知识、传递知识和运用知识的能力提高得格外迅速,这就形成了发展中国家第二层次的网络比较优势,使之在国际分工中占据了一个比较有利的地位,带动本国的数字经济出现跨跃式的发展。例如,印度软件业的“离岸开发”,已经成为带动全国经济转型的重要手段。
信息技术方面的后发性优势一是信息化的特点:
对于发展中国家来说,信息化比工业化更容易追赶,这是由于信息化有一些非常显著的特点:与制造业相比较,设备投资成本较小;技术已经标准化,学习成本很低;知识的共享性和外溢性等等。
二是信息技术的潜力:
信息技术本身的巨大潜力和无穷无尽的机会,也为发展中国家数字经济的发展开辟了广阔的道路。信息技术和信息基础设施较落后,意味着发展中国家的转换成本较小,就有可能瞄准技术前沿实现跨越式发展。由于有大量现成的技术可以利用,发展中国家可以把研究与开发的重点转向有原创性、突破性的技术上,如塑料芯片技术、生物芯片技术等。一旦出现突破。
技术、经济和产业格局就有可能出现重大改观,就有可能带动一国经济走向兴旺发达,甚至萌生出一场新的产业革命。在数字经济时代,网络和信息技术是一种工具,是能够提高一切领域工作效率的强有力的工具。只要发展中国家善于学习、善于利用这个工具,就能使之成为缩短数字鸿沟和贫富差距、提高生产力水平和综合国力的强有力手段。
本文来自作者[晨露珠]投稿,不代表五洲号立场,如若转载,请注明出处:https://m1.tzwzszyy.cn/jingyan/202508-18340.html
评论列表(3条)
我是五洲号的签约作者“晨露珠”
本文概览:人工智能这个词的年纪应该比很多人的父母年纪都大。“人工智能”这个词诞生于1956年,首次出现在达特茅斯学院的夏季研讨会,当时的研讨会全称为“达特茅斯暑期人工智能项目”,人工智能...
文章不错《近几年人工智能的进步算大吗?》内容很有帮助