多糖分解后的产物

多糖是由很多个单糖分子缩合而成的高聚物。自然界中的植物、动物及微生物体内都含有多糖。同低聚糖一样,多糖是由单糖通过糖苷键连接起来的,从多糖的形状上看,可分为直链和支链两种,而且多糖链中由于糖苷键的类型不同可有不同的空间结构;如直链多糖的 α(1->4)-葡聚糖和 β(1->3)-葡聚糖具有空心螺旋构象,而 β(1->4)-葡聚糖和 α(1->3)-葡聚糖具有锯齿形带状构象。由一种单糖构成的多糖叫纯多糖,由二种以上单糖构成的多糖叫杂多糖

一、多糖的结构

1.直链多糖

直链淀粉是由 200—300 个 α(1->4)-葡萄糖以糖苷键相连形成的链状缩聚物;其基本结构单位是“麦芽糖基” 。

纤维素是由上千个(平均含有 3000 个)葡萄糖以 β(1->4)-糖苷键相连结形成的链状缩聚物;其基本结构单位是“纤维二糖基”。

2.支链多糖

直链多糖的结构特点一般用二糖结构作为重复单位就可表示出来,支链多糖则可以看成由许多直链多糖相互连接而呈分支状。支链淀粉是一种支链多糖,其相对分子量比直链淀粉的大。有的支链多糖分子量可高达 600 万,其中可有 50 个以上支链,而且每个支链是由 17—30 个数目不等的葡萄糖基构成的。在支链淀粉中,主链和支链都是由 α(1->4)-糖苷键连接起来的;在分支点上,是主链(直链)上的一个葡萄糖基 6 位上的羟基与支链上一个葡萄糖苷羟基形成糖苷键,因此构成分支。在分支点上的葡萄糖基的 1,4,6 三个羟基都参与了糖苷键的形成。

目前位置:首页—>糖类化合物—>N8 多糖

多糖

二、纯多糖和杂多糖

1. 纯多糖

葡聚糖是最重要的纯多糖,常见的淀粉、纤维素、右旋糖酐等都是一些来源不同或糖苷键不同的葡聚糖。自然界中以游离态存在的单糖很少,一般都为多糖形式。在实验室或工业生产中是由各种纯多糖为原料制取相应的单糖的。其它一些纯多糖在自然界中也有相当的分布。]

2.杂多糖

杂多糖可以分成动物粘多糖、植物杂多糖及微生物杂多糖等。

1)动物粘多糖

在动物体内的粘多糖通常是以一定的方式与蛋白相连,而蛋白肽键上的氨基又可与另外的多糖结合,这就构成了在水介质中具有弹性的凝胶状网络;在粘多糖的单糖组分中常含有糖醛酸结构部分。

(1)透明质酸

透明质酸最初发现于眼球内的玻璃体,也存在于解膜中,在动物的结缔组织中也存在透明质酸。有些细菌中因含有透明质酸酶,因面能分解透明质酸而侵害机体。

透明质酸是一个直链的杂多糖,其两端连接在一系列的蛋白肽链上,透明质酸具有 β-葡萄糖醛酸 (1->3)β乙酰氨基葡萄糖(1->4)的结构单元。

(2)粘液素

在粘膜分泌的粘蛋白中,含有粘液素,这是一种粘度很大的粘多糖,其糖链较短而分支较多,存在于机体与外界接角的粘膜部分。粘液素在呼吸道中可捕获空气中的细菌,也可防止消化液中有害物质对胃壁的侵害,对溃疡性胃组织有保护作用。粘液素与透明质酸的结构差别是乙酰氨基葡萄糖是 6-硫酸酯,具有 β-葡萄糖醛酸 (1->3)β-乙酰氨基葡萄糖 6-硫酸酯 1->4 的重复结构单元。

(3)肝素

是一种含有硫酸酯的粘多糖,为动物体内的一种天然抗凝血物质。肝素最早在肝脏中被发现,也存在于肺、肌肉、血管壁、肠粘膜等组织中,但正常血液中几乎不存在肝素。肝素可用作血液体外循环时徨的抗凝血剂也用于防止脉管中血栓形成。

肝素属于不均一的多糖分子,相对分子质量平均 17,000。它的组分是氨基葡萄糖和二种糖醛酸,其中以艾杜糖醛酸为主,其次是葡萄糖醛酸。分子结构可用一个四糖重复单元表示,氨基葡萄糖苷是 α-型的,糖醛酸糖苷是 β-型。肝素的含硫量在 9—12.9% 之间,硫酸基连接在氨基葡萄糖的 2 位氨基和 6 位羟基上,分别形成硫酰胺和硫酸酯。在艾杜糖醛酸的2位羟基成硫酸酯。在生物体内,肝素的硫酸基呈负离子状态。

目前位置:首页—>糖类化合物—>N8 多糖

多糖

2)植物杂多糖

在植物中除纤维素外,还有叫做半纤维素的杂多糖,在半纤维素中含有糖醛酸,所以它溶于碱液并易被酸水解。水解产物主要是五个碳的糖;如木糖、阿拉伯糖以及甘露糖、半乳糖和糖醛酸。小麦的麦秸中,半纤维素部分结构为:

树胶也是一种植物杂多糖,其基本结构特征为:

琼脂是一个海藻多糖,它是由琼脂胶和琼脂糖构成的混合物。琼脂的 1—2% 水溶液冷却后便形成凝胶,是微生物培养基的常用介质,也用作免疫扩散和血清免疫电泳的介质。琼脂糖在生化分析、纯化中用于胶过滤材料;琼脂胶是琼脂糖的硫酸酯,其解离后产生电荷,有相当强的吸附作用,因此不适用作胶过滤材料。琼脂糖的结构重复单元是一个琼脂四糖,但只有两个单糖组分,即 D半乳糖和 3,6-脱水 L-半乳糖,各占50%。

3.微生物杂多糖

在微生物中,有多种杂多糖。如细菌荚膜是具有免疫活性的杂多糖,而在细菌体的细胞壁中,存在胞壁质或磷壁(酸)质等的主要成分也是由杂多糖与多肽组成糖蛋白或由杂多糖与氨基酸形成酯.

目前位置:首页—>糖类化合物—>N8 多糖

多糖

三、常见的重要多糖

1.淀粉

淀粉是植物体内主要的能量储备型态,是人体所需糖类化合物的主要来源,谷物中淀粉的含量最高,一般在 75% 以上。用酸处理淀粉时,淀粉发生水解,先生成糊精等低聚糖,继而再水解成麦芽糖或异多芽糖,最后生成 D-(+)-葡萄糖。

淀粉由直链淀粉和支链淀粉两部分组成。干燥的淀粉呈颗粒状,直链淀粉是线型螺旋形聚合物难溶于水,支链淀粉有较多分支、易于和水分子形成氢键,故信于水,用热水处理淀粉,可得到约 80% 的可溶性支链淀粉,和 20% 不溶性直链淀粉。

直链淀粉在稀酸中水解得到麦芽糖和葡萄糖,支链淀粉在稀酸中水解时还可得到异麦芽糖。异麦芽糖是两个 D-(+)-葡萄糖单位通过 α-(1->6)-糖苷键形成的。

直链淀粉完全甲基化后的水解产物主要是 2,3,6-三-O-甲基葡萄糖,而来源于无还原性端糖基的 2,3,4,6-四-O-甲基葡萄糖还不到 0.5%,支链淀粉的完全甲基化后的水解产物主要是 2,3,6-三-O-甲基葡萄糖,但生成的 2,3,4,6-四-O-甲基葡萄糖量可高达 5%,而且还有 2,3-二-O-甲基葡萄糖生成。这说明支链淀粉的链长比直链的短,在 6 位上有分支点。

直链淀粉中主要是 α(1->4)-糖苷键,这是直链淀粉的一级结构;直链淀粉的链不是直线型,而是盘旋成一个螺旋,每盘旋一周约含有六个葡萄糖单位,此为直链淀粉的二级结构;另外,盘旋的直链淀粉也不是直筒形的,盘旋的长链还可以弯折形成一个表面上不规则的形状,此为直链淀粉的三级结构;如果多条直链淀粉之间通过分子间力或氢键自行结合在一起,形成结构更复杂的复合型直链淀粉,此为四级结构。直链结构的淀粉,其二级结构的中间空穴可以络合碘分子形成蓝色络合物,而支链淀粉与磺作用呈紫红色。

目前位置:首页—>糖类化合物—>N8 多糖

多糖

淀粉是食品、医药、化工、纺织工业的重要原料,而改性淀粉则有更为广阔的应用领域,例如淀粉与丙烯腈的接枝共聚物,用碱液处理后,可得到分子内含有酰氨基和羟基的共聚物,该共聚物有极强的吸水能力(可吸收本身质量 1000 倍以上的水份)和可降解性,在农业、卫生、环境、日常生活中有大量的应用。

2.纤维素

纤维素在自然界中有广泛分布和丰富的储量,木材、亚麻、棉花、禾杆等是纤维素的主要来源。食草动物的消化道中的微生物可产生纤维素酶使纤维素水解,所以食草动物能以富含纤维素的植物为食。纤维素的糖链是平展排列的,相互作用形成纤维素束,这是由于相邻纤维素分子中的羟基互相作用生成氢键而使糖链之间紧密地结合在一起;若干个纤维素束相互绞在一起就形成绳索状结构,这种绳索状结构按一定规律排起来就形成肉眼所见的植物纤维纹理。

纤维素中的糖苷键是 β-(1->4)-型,纤维素无色、无味、不于水及一般的有机溶剂,也不具有还原性(如不能还原试剂)。纤维素较淀粉推于水解,在酸性条件下水解纤维素可得纤维四糖、三糖、二糖等,最后水解产物为 D-(+)-葡萄糖。

果胶是多聚半乳糖醛酸;木质素不属糖类,是一种结构不一的多酚类化合物,它与纤维素结合紧密,起着提高植物的机械强度的作用。

X 衍射和电酉晕⒕笛芯拷峁?砻飨宋?胤肿有纬傻男∈?本段?3nm,分子之间通过氢键联结,具有较强的结晶性质,但不溶于水,也无甜味。纤维素可溶于 Schweitzer 溶液,分子中的羟基与铜离子形成铜氨络合物,这个络合物遇酸后即被分解,使纤维素又沉淀下来。

纤维素作为细胞外壁的支撑和保护物质,可使细胞有足够的韧性和刚性;在生物化学和生物工程研究中是很有价值的载体材料。

纤维素及其衍生物有许多重要的应用。例如人造棉、人造丝就是一种粘胶纤维。将纤维素用氢氯化钠溶液处理生成的钠盐再与CS2作用,生成纤维素黄原酸酯的钠盐,然后把黄酸酯的盐以细丝压入稀硫酸中进行水解、得到粘胶纤维,较短的纤维称作人造棉毛,较长的纤维叫作人造丝。

目前位置:首页—>糖类化合物—>N8 多糖

多糖

纤维素羟基

纤维素中的羟基可进行醚化和酯化反应,生成纤维素醚和纤维素酯。如:甲基纤维素,乙基纤维素,羟甲基纤维素,硝酸纤维素,醋酸纤维素等等,它们分别在纺织、涂料、造纸、皮革(用于分散剂、乳化剂、整理剂、增稠剂、增强剂、胶粘剂、上浆剂、涂膜剂等)胶片、绝缘材料、复合材料(如玻璃纤维、碳纤维、钢纤维、聚丙烯纤维)等方面有重要的应用。

3.甲壳素与壳聚糖

甲壳素(也称甲壳质)是乙酰氨基纯多糖,其名称是 2-乙酰氨基-2-脱氧-β-(1->4)-D-葡聚糖,是 N-乙酰氨基 2-脱氧葡萄糖通过 β(1->4)糖苷键连接形成的直链多糖。

由于在甲壳素分子间存着很强的怪键作用,又有酰胺基团存在,所以甲壳素不溶于一般溶剂,加热时也不熔化,在200度时则开始分解。在酸性深剂中受热溶解时发生降解。甲壳素脱去分子中的乙酰基则转变为壳聚糖,即氨基多糖,其溶解性较大,也称为可溶性甲壳素。甲壳素和壳聚糖的结构与纤维素相似。

甲壳素在节肢动物的外壳中含量非常高,是虾、蟹、昆虫等外壳的重要成分;在自然界中每年由生物体合成的甲壳素有数十亿吨之多,远远超过其它的氨基多糖,是十分丰富的自然资源。

虾、蟹壳中除了含有甲壳素外、还含有碳酸钙和蛋白质等;用稀酸在常温下分解碳酸盐,再用稀碱经加热分解蛋白质,然后经过脱色处理就可得到白色的甲壳素产品。甲壳素在 40—60% 的 NaOH 溶液中受热,在 100—160 度的范围内进行非均相脱乙酰基的反应,可以得到脱乙酰化度在 80% 左右的壳聚糖,在 160 度时,壳聚糖在 50% 的溶液中不分解。通过增加脱乙酰基反应的次数、降低反应温度、缩短反应时间的方法可得到脱乙酰化度高达 90% 以上的高相对分子质量(50—60万)的壳聚糖。

壳聚糖在 6 位上的氧化和2位氨基的磺酸化生成的产物与高效凝血剂肝素在结构上有极大的相似性;为寻求制得廉价的抗凝血剂提供了有效的途径。

与纤维素的反应性能和反应途径相类似,甲壳素和壳聚糖也能进行羟乙基化、羧甲基化及氰乙基化反应生成相应的衍生物,反应主要在 6 位碳的羟基上发生。

壳聚糖通过分子中的氨基和羟基可与一些重金属离子形成稳定的合物,用于吸附分离相应的金属离子,如:Hg2+、Cu2+、Au2+、Ag+等。甲壳素和壳聚糖通过络合及离子效换作用,可对蛋白质、氨基酸、核酸、酚类、卤素以及某些染料等进行吸附;使其应用前景极具潜力。目前甲壳素和壳聚糖在工业上的应用主要是用于重金属离子螯合剂及活性污泥絮凝剂;壳聚糖对活性污泥的絮凝作用很强,并且毒性低,又可生物分解。在纺织、印染工业中,用壳聚糖处理过的棉、毛织物及化纤品,可提高染色性、改善机械性和耐折皱性,提高耐用水性和电绝缘性。用甲壳素的手术缝合线柔软,机械强度高,易被机体吸收;而且可用常规的方法消素养处理并能长期保存使用,很有价值。

近十年来的研究结果表明,甲壳素和壳聚糖在很多方面(如:医药、生物、化工、环境、纺织、食品、保健品、化妆品、洗涤剂等)显示出良好的应用前景。

果实生长进入并达到最适的食用阶段。果实从生长、发育、成熟至衰老是一个连续的过程。当果实充分长成后,多数呼吸开始骤然升高,含糖量增加,果皮变色,同时,伴随着一系列生理、生化变化,果实进入成熟,从外观上表现出果实已达到了采收、销售的指标。随后果实继续质变,果肉变软,芳香出现,达到了最佳可食期,即完熟期。成熟过程可以在树上完成,也可以在采后完成。果实成熟至完熟的时间进程,因种类和品种而异。充分成熟的果实,呼吸下降,酶系统发生变化,遂即进入衰老。

生物学意义

果实作为一个繁殖器官包括种子和果肉组织两部分。果实成熟形成美丽鲜艳的外观,散发芬芳香气,以及甘甜美味的果肉吸引昆虫、鸟兽作为食物转移,并把种子遗留下来,从而起传播种子的作用,植物也因此得到扩散和繁衍。在自然选择过程中,色彩鲜艳、香气浓郁,味道鲜美的各种果实具有更大的吸引力,因而得以保留下来;同时,果实也为种子的萌发提供了良好的营养条件。没有成熟的果实,由于不可食用,有效地保护着种子生长成熟。

特征与特性

各种果实组织的组成和来源很不相同,但成熟时都有着共同特点,即发生特征性的色、香、味和质地的变化,很容易作为食品被人类的感官所察觉。这些变化是一系列各不相同而多少同步进行的生理生化的综合反应。

色泽

未熟果实,表皮细胞含叶绿体,呈现绿色。成熟时,叶绿素降解,绿色消失。在柑橘类果实中,在叶绿素消失同时,叶绿体逐渐转变为色素体。其中,胡萝卜素类物质呈红黄颜色,成熟之前已经积累在叶绿体中,或者成熟时重新合成增加。当叶绿素降解后,便显出胡萝卜素的颜色,并在衰老过程中维持稳定。不同种类果实中,由于色素体的各种有色化合物含量的不同,最后表现的颜色也有差异。菠萝果肉组织细胞也含类胡萝卜素物质,故呈现**;苹果等果实成熟时的颜色,则决定于表皮细胞中含有各种花色素的成分。果实发育过程中光照条件(光强、波长)、温度等影响色素形成。成熟时表面产生的蜡质覆盖物则改变果实表面的光泽和质感。

芳香

各种果实成熟时所产生特有的气味和芳香,决定于所含有挥发性有机化合物的种类与数量。如酯类、醇类、酸类、酮类和醛类。其中许多是大多数水果所共有,如乙醇等。其含量非常低,通常只占果实重量的百万分之几。大多数水果均含有百种以上小分子量的挥发性化合物,但不同种类、品种所含芳香化合物成分及数量不同,不同成熟阶段也因化合物不同,而构成不同的气味。果实成熟时能生成少数几种化合物,以决定其特征性的气味。如苹果为乙基-2-甲基丁酯:香蕉,异戊乙酯,丁子香酚;葡萄,甲基邻氨基苯甲酯,里哪醇和牻牛儿醇:柠檬,柠檬醛,苧烯:梨,甲基反-2-顺-4-葵二烯酸酯;橘,甲基N-甲基邻氯苯甲酸酯和百里酚,萜烯。这些化合物,即使含量极小也能被嗅觉器官所察觉。如成熟苹果香气的成分(乙基-2-甲基丁酯)在空气中,其嗅觉阈值浓度仅为0.0001ppm。

风味

包括甜、酸、涩、苦。甜味主要来自果实中的糖类,成熟开始后,淀粉迅速大量转化为蔗糖、葡萄糖、果糖等,使果实变甜。呼吸跃变型果实,如苹果、梨、香蕉等,这种变化非常明显,非跃变型果实如葡萄、柑橘等,在成长过程中并不累积淀粉,只是不断累积叮溶性糖,所以是逐渐增加甜味。果实成熟时所含的糖类包括葡萄糖、蔗糖、果糖、山梨糖醇、肌醇等。不同种类水果其含量和比例相差很大,如桃、李、杏、樱桃以葡萄糖为主,其次为果糖、蔗糖、山梨糖醇:无花果、苹果、梨、枇杷以果糖为主,其次为葡萄糖、山梨糖醇和蔗糖:葡萄、香蕉、荔枝、龙眼、猕猴桃等以葡萄糖为主;而菠萝和忙果则以蔗糖为主。由于糖类是呼吸作用的主要基质(见果实呼吸)被转化为能量或其他化合物而逐渐消耗和减少。果实的酸味来自有机酸,有机酸也可作为细胞呼吸的基质,也是代谢的中间产物。果实中有机酸大量存在于果肉细胞的液泡中。柠檬酸大量含于柑橘、菠萝和梨;苹果、香蕉、樱桃、李等主要为苹果酸:匍萄主要含有酒石酸。成熟过程中有机酸含量减少,酸味也逐渐减弱。香蕉和菠萝的有机酸却随成熟而增加,在充分成熟时最高,但其绝对量并不高,故不致使果实变酸。果实的甜酸味不仅决定于糖和有机酸的绝对含量,更重要的是糖酸比。如柑橘、葡萄成熟时,糖的含量增加并不多,但由于酸减少而使糖/酸比增大,增进了甜味,改善了风味。所以糖/酸比值是反映这类果实品质的重要指标。许多未成熟的果实含有许多酚类化合物、单宁物质,因而具仃苦涩味,如香蕉和柿子。在成熟过程中水溶性的单宁物质发生聚合作用,形成不溶性的多聚物,涩味也逐渐减弱,乃至消失。

肉质

未成熟果实果肉细胞与其他植物细胞一样具有纤维素和半纤维质所组成坚硬的细胞壁。细胞之间为中胶层,主要由半乳糖醛酸分子聚合的果胶质所构成的多聚半乳糖醛酸分子,再通过钙结合形成更大的聚合分子,而使细胞间联系非常紧密,使果肉组织具有很高的机械强度。成熟时由于构成细胞壁和中胶层中大分子化合物水解为可溶性小分子,细胞间的连结开始松散,细胞壁逐渐脆弱,以致果实软化,返沙发绵,硬度降低,最后组织崩解溃散。香蕉成熟时细胞内的大量淀粉被水解为可溶性糖,是硬度降低的主要原因。某些果实,如部分梨,果肉细胞中含有石细胞,其大小数量以及累集的程度对梨果肉质有较大的影响。此外,细胞的大小,细胞壁的厚薄,也使果肉质地表现较大差异。

生理生化反应

成熟过程包括许多积极的合成作用,形成新的蛋白质(酶)和其他新的化合物。衰老阶段就转向以不可逆的分解代谢为主。主要包括:

呼吸作用

在果实成熟和衰老过程中呼吸速率变化起着决定性作用,并可以分为跃变型和非跃变型两类(见果实呼吸)。成熟时乙烯自我催化而大量产生,并发动和促进跃变型果实的成熟过程。

叶绿体破坏

成熟时,细胞质中pH值的变化,在氧化作用和叶绿素酶的作用下,叶绿体的叶绿素分解,氧化成为脱镁叶绿素酸脂和紫红素等物质,从而丧失绿色。同时叶绿体片层结构破坏,基粒溶解,嗜锇体增加,胡萝卜素物质累积,叶绿体逐渐转变为色素体。在某些果实中花青素类物质合成加强。

淀粉水解 参与催化的α-淀粉酶,β-淀粉酶以及磷酸化酶活性增加。降解蔗糖的转化酶活性也在成熟时增加。

细胞壁及中胶层分解

纤维素、半纤维素、木质素、果胶等构成的细胞壁和细胞间中胶层的多糖水解,从而瓦解组织结构,使果实硬度降低。鳄梨成熟时纤维素酶活性增加是果实软化的重要原因。在苹果等果实中,由于果胶酶(多聚半乳糖醛酸酶)和果胶甲基酯酶的作用,使原果胶水解为可溶性果胶,进而降解为果胶酸,致使果实发绵。多聚半乳糖醛酸酶是在成熟开始时重新合成,并随着成熟而不断增加。

有机酸代谢增强

成熟时与三羧酸循环有关的酶活性变化改变了细胞中有机酸的成分和数量。有机酸主要来自糖转化,通过糖酵解作用形成的丙酮酸进入三羧酸循环形成了各种有机酸。它们可以作为基质在呼吸中消耗减少,或者转化为糖类等其他物质。

组织、细胞结构变化

随着成熟细胞膜的透性改变,离子泄漏增加,从而影响细胞中的“分室作用”,改变酶和基质的空间位置,使许多生化反应得以进行。细胞内的超微结构和细胞器此时也发生变化。

核酸、蛋白质的变化

成熟时可溶性蛋白质增加,新的酶类大量合成,如纤维素酶、多聚半乳糖醛酸酶等。新酶的形成是由于信使核糖核酸(mRNA)的形成,成熟时也观察到核糖核酸(RNA)的形成和增加。

酶活性加强

花青素(类黄酮类化合物)以及单宁等酸类化合物的生成和分解,与酚类化合物代谢有关的酶活性增加密切相关;果实在衰老,不良环境以及外部侵染、伤害时,苯丙氨酸解氨酶活性增加,常常导致组织中绿原酸等积累,组织褐变。此外,过氧化物酶,过氧化氢酶,多酚氧化酶等许多氧化酶的活性增加,使组织中氧化作用加强,加速了成熟与衰老。

不同种类果实在不同条件下,各种变化可以彼此相对独立进行,但强度并不一致。

内源激素的变化和作用

成熟和衰老作用受体内各种激素的调节控制,是这些激素共同作用下的综合结果。

乙烯

乙烯是果实等组织成熟衰老起促进作用的主要激素。中国早有采用燃香发烟来催熟香蕉等果实,这是利用燃烧时,烟中存在的微量乙烯而起作用。1924年丹尼(F.E.Denny)发现乙烯促进柠檬脱绿,1934年盖恩(R.Gane)证明苹果本身能生成乙烯。1935年克罗克(W.Crocker)等提出乙烯是“成熟激素”的概念。一直到20世纪60年代气相层析技术广泛地应用于乙烯研究中,使乙烯测定的灵敏度达到十亿分之一(ppb),才能精确地测定和追踪它在组织中生成和变化以及所起的作用。20世纪60年代末被公认为与生长素等一样,是一种植物内源激素。乙烯之所以是促进成熟衰老的内源激素:第一,它是果实本身的产物,其生成量增加与呼吸跃变、成熟衰老有关的变化时间进程是一致的:第二,外源增加乙烯能诱发或加速果实和其他器官组织成熟衰老,如脱绿、刺激呼吸、增加细胞膜透性等;第三,排除果实中的乙烯,如减压处理,通风换气措施,或抑制乙烯生成,如降低温度、氧浓度,应用乙烯生物合成的抑制剂以减少和抑制内源乙烯生成,以及用乙烯作用的拮抗物质如二氧化碳,银离子等清除乙烯的生理作用时,成熟衰老受到抑制和延缓。但也有对乙烯是果实成熟激素持否定的意见,其主要理由是:果实成熟是许多激素共同作用下进行的,不是一种激素作用的结果,各种激素之间存在着复杂的相互作用和影响。特别是有些果实如葡萄、无花果、柑橘等成熟时起主要作用的可能不是乙烯而是脱落酸。此外,乙烯对某些果实遗传性的成熟障碍无力克服。

跃变型果实成熟时乙烯急剧增加,如苹果跃变前果实中乙烯浓度在0.1ppm以下,高峰期达到几百以至几千ppm,增加3~4个数量级,不同种类和品种之间差异很大(见表)。

1979年美国亚当斯(D.O.Adams)和杨祥发确定了果实中乙烯生物合成的途径是:蛋氨酸→S-腺苷蛋氨酸(SAM)→1-氨基环丙烷基羧酸(ACC)→乙烯。跃变型果实在乙烯作用下诱发成熟,成熟时乙烯刺激1-氨基环丙烷基羧酸合成,促进乙烯产生,形成乙烯自我催化,而不断大量产生(见图)。跃变型果实乙烯增加的时间进程与呼吸速率上升以及其他成熟作用差不多同步进行。非跃变型果实缺乏乙烯自我催化能力。但对已经跃变的果实,外源乙烯则不再刺激呼吸增加。对于非跃变型果实,外源乙烯也能促进呼吸增加,而且与所用的乙烯浓度成正比,除去乙烯后呼吸即恢复,不能诱发呼吸跃变和乙烯继续增加。在乙烯作用下其他与成熟衰老有关的反应都被促进,如叶绿素分解,脱绿,增加着色;淀粉水解,果实软化。

果实启动成熟作用不仅决定乙烯浓度和处理时间,还取决于组织对乙烯作用的敏感性。果实随发育成长对乙烯的敏感性增加,故长成的果实对很低浓度乙烯便能产生反应,启动成熟;而较幼嫩的果实,诱发成熟所需乙烯催熟的浓度要高,时间要长。所以果实内部乙烯浓度上升先于呼吸上升,并不一定是发动成熟的先决条件,只有果实组织对乙烯敏感性增加达到接受乙烯作用时,才能启动成熟。

生长素

生长素具有延迟衰老的作用,是果实成熟的抑制因子之一。生长素在许多组织中促进乙烯生成,但在成熟时它的作用比较复杂,它可以抑制叶绿素分解、果实软化、使呼吸上升和降低组织对乙烯的敏感性。果实开始成熟需要组织中生长素水平降低到一个临界值以下。生长素通过吲哚乙酸(ⅠAA)氧化酶和过氧化酶等作用而被破坏。

赤霉素

具有阻止组织衰老的作用,在柑橘类果实上赤霉素抑制叶绿素分解使果皮较长时间保持绿色。但在抑制衰老时,有时会发生枯水现象。

细胞分裂素

具有延缓衰老的作用,抑制组织中蛋白质和叶绿素分解。在果实成熟时含量不断减少,作用消失。

脱落酸

脱落酸的含量增加与组织衰老有关。在苹果、梨、草莓等果实中成熟时脱落酸增加。它对细胞分裂素、赤霉素具有拮抗作用。葡萄果实成熟中,乙烯的生成变化不如脱落酸明显。只有当脱落酸浓度积累到一定水平后,乙烯对果实成熟才表现刺激作用。葡萄经乙烯处理,可以增加脱落酸含量,因而认为对于调节葡萄成熟,脱落酸与乙烯具有协同作用,但脱落酸占主导地位。

果实成熟机理的假说

对于果实成熟的机理,目前尚未完全清楚,主要有以下三种假说。

组织阻抗说

20世纪20年代英国科学家布莱克曼(Blackman,1928)最初提出,近又重新流行,认为成熟是组织阻力破坏的结果,导致呼吸跃变,细胞膜结构破坏,组织透性增加,释放水解酶类与底物接触而起作用,加速了代谢过程,增加呼吸作用,对细胞壁水解破坏。电子显微镜的研究证实梨在跃变时细胞结构发生变化,叶绿体解体。

基因表达说

根据成熟过程中蛋白质合成增加现象,强调成熟是一个基因活化过程,一系列与成熟有关的蛋白质(酶)的基因活化、表达,导致新的信使核糖核酸和蛋白质(酶)生成,增加了降解酶与合成酶的比例,从而催化有关的生化反应。现已证明鳄梨、番茄成熟时确有新的纤维素酶和多聚半乳糖醛酶及其相应的信使核糖核酸形成。

果实成熟衰老的调节

成熟衰老是一系列生理生化反应的结果,并受外界贮藏条件的影响。在生产实践中人们也利用改变外界条件来调控果实的成熟衰老,达到催熟或保鲜的目的。温度直接影响化学反应的速度,从而影响成熟作用。在一定范围内降低温度可延缓成熟与衰老。洋梨在常温下采后20天内出现呼吸上升,降低温度,呼吸高峰的峰值下降,跃变推迟。如采后置于0℃左右,其呼吸高峰出现在140天以后,峰值也只有21℃下的1/10左右。气体成分影响呼吸作用,从而也影响成熟衰老的进程。降低环境氧分压,会抑制呼吸作用和乙烯生成,缺氧过度,果实转向无氧呼吸,代谢失常,乙醇、乙醛积累;二氧化碳是乙烯作用的拮抗物,故增加二氧化碳浓度可抑制成熟,降低呼吸强度。所以控制环境温度,改变和控制气体成分是果品贮藏的有效方法,即生产中常用的冷藏和气调贮藏的原理。果实周围的湿度影响水分蒸发和散气,细胞水分的亏缺会加速乙烯和脱落酸生成,因而促进成熟衰老。采前采后外源应用生长调节物质也能加强或迟缓成熟。如乙烯利、乙醇、脂肪酸等对促进乙烯生成具有催熟作用;而赤霉素,生长素类、生长抑制剂、乙烯抑制剂以及某些代谢抑制物质则能延迟成熟。机械损伤和病虫侵染促进乙烯产生,继而促进成熟衰老。电离辐射能干扰成熟作用,适当剂量的γ-射线能延缓成熟,过高剂量则造成组织受伤,加速衰老。

本文来自作者[晓萱儿]投稿,不代表五洲号立场,如若转载,请注明出处:https://m1.tzwzszyy.cn/ylzx/202508-17718.html

(10)
晓萱儿的头像晓萱儿签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 晓萱儿的头像
    晓萱儿 2025年08月05日

    我是五洲号的签约作者“晓萱儿”

  • 晓萱儿
    晓萱儿 2025年08月05日

    本文概览:多糖是由很多个单糖分子缩合而成的高聚物。自然界中的植物、动物及微生物体内都含有多糖。同低聚糖一样,多糖是由单糖通过糖苷键连接起来的,从多糖的形状上看,可分为直链和支链两种,而且...

  • 晓萱儿
    用户080511 2025年08月05日

    文章不错《多糖分解后的产物》内容很有帮助